Theorem
Give 2 sequences $\{a_n\}$ and $\{b_n\}$, put
$$ A_n = \sum_{k=0}^n a_n$$
if $n \geq 0$; put $A_{-1} = 0$. Then, if $0 \leq p \leq q$, we have
$$\sum_{n=p}^q a_n b_n = \sum_{n=p}^{q-1} A_n(b_n - b_{n+1}) + A_qb_q - A_{p-1}b_p$$
Proof
$$ \sum_{n=p}^q a_n b_n = \sum_{n=p}^q (A_n - A_{n-1}) b_n = \sum_{n=p}^q A_nb_n - \sum_{n=p-1}^{q-1}A_nb_{n+1}$$
Simplify the last expression.
Note
每次我要用這東西的時候都會忘記,就這樣記下來。